How to link Engagement to Business Performance using Analytics

We all know that engaged employees work harder and make fewer mistakes. Employee engagement is one of HR’s best-known metrics. Because it is so important, many...

8091 4
8091 4

We all know that engaged employees work harder and make fewer mistakes. Employee engagement is one of HR’s best-known metrics. Because it is so important, many HR policies focus on improving this key performance indicator.

There is some obvious logic behind this. Researchers see time and time again that engaged employees have a positive effect on business performance.

The science

Engaged employees are more actively involved in their work, pay attention and effectively tackle challenges to reach their goals. Also, they are resilient, find their work meaningful, work longer hours and are more immune to stress.

Everybody wants their employees to be engaged. However, there is a problem. Only 32% of the U.S.’ labor force is engaged. Interestingly, managers and executives are the most engaged.

Engagement seems to increase with age. Millennials are the least engaged (28.9%), while people in their fifties and older are much more engaged (37%; Gallup, 2014).

Engagement directly impacts absenteeism. Research amongst teachers shows that engaged teachers take 10 sick days a year. Non-engaged teachers take 11 sick days. However, actively disengaged teachers take 20(!) sick days a year (Gallup, 2014). This is cause for concern, since only 30% of teachers are engaged.

Some additional numbers: Engaged workers are absent less often (-37%). They are involved in less incidents (-49%) and quality defects (-41%). At the same time, they show 10% higher customer ratings, 21% higher productivity ratings and 22% higher profitability ratings (Gallup, 2012). I bet this heavily impacts bottom-line performance!
Graph: impact of employees engagement on business outcomes

HR and Engagement

HR has been able to consistently produce the employee engagement metric. Organization-wide engagement is often seen as an important HR indicator. Companies such as Philips and Unilever report engagement numbers in their annual reports. Because of its impact on the workforce, it does not come as a surprise that many HR policies focus on improving this one KPI.

However, two questions remain. First, what is the real value of engagement? And, are investments in engagement worth it? In other words: what is the return on investment (ROI) in dollars for a 1-point improvement in engagement for your organization?

These are questions we have to answer in order to understand engagement. In this blog I will take a 3-step approach to answer the question, “Does engagement really lead to better bottom-line performance?”

1. Defining the right question

We want to answer the following question: “Does engagement lead to better performance?”

Before we start our analysis, we need to accurately define what data we need. If you use the wrong data you end up answering a totally different question. If you think statistics are a tad boring (it’s not!) you should skip the first two steps.

  1. Decide your level of analysis.
    The engagement question can be answered by looking at various levels. These are so-called “levels of analysis”. You can look at individuals and their individual performances, teams and their team performance, and at the organization as a whole.

    Each level requires different data. For example: when you look at individuals, you miss information about their team and surrounding. Literature shows some proof that disengagement can be contagious. A five-person team consisting of four very engaged employees and one disengaged employee will most likely perform differently than a team of five moderately engaged employees, even though the average engagement score of both groups is more or less the same.

    The one disengaged team member will negatively affect the performance and work ethic of the rest of the team. This is because they lack the synergy of similar engagement. Indeed, over time the other four members are expected to become less engaged because disengagement is contagious (more so than the other way around). These intricacies are missed when you look at the group level alone, but they do play an important part.

    This is why your ‘level of analysis’ is important.

    You would preferably start at the level with the most specific data. Many companies conduct yearly engagement surveys for their entire population. This means that the individual level provides detailed information and this makes it a good place to start your analysis.

  2. Decide how you define performance
    We know we will use individual engagement data as input. Now, what would be a good data-source for output?

    One option to use for output is to use organization-wide financial performance measures. This information is available in the finance department. Using organization-wide financial performance data is rather tricky. In this example it would mean that you would try to relate individual engagement data to organization-wide performance. This way you would miss intricacies and dynamics that happen within groups and between groups in the organization. These are dynamics that are not really measurable. In other words, these effects will act as a set of potentially very strong confounding variables in our data.

    Another option is to measure manager-rated individual performance. This is usually available in your performance management systems. However, performance appraisal data is oftentimes subjective. This is why companies such as Deloitte, Adobe and Accenture stopped doing them. Taking this subjective data as an outcome measure can skew the conclusions of the research. In fact, if you formulate an answer using this data, you will most likely answer a different question.

    In other words, all these data sources have serious limitations when it comes to answering the question how engagement enhances performance. So, how do we fix this?

  3. Start with small and specific analyses
    One way to fix this is to start with small experiments. Engagement will lead to different outcomes, depending on people’s work. You can, for instance, take the engagement data of your sales people and compare them to their individual sales numbers. This will provide you with insight into how an increase in engagement will impact your sales. A great first experiment which helps put a financial number on engagement.

    Sales metrics are important to sales departments. Other departments need different metrics. Take customer service employees. Comparing their engagement level to company sales will probably not tell you much. However, you will gain very useful information when you compare their engagement level to your customer satisfaction.

    These are small and specific experiments with tangible results that could have a big strategic impact.

  4. Relate your findings to the bigger picture
    Imagine you would find that the engagement of your customer service employees is related to customer satisfaction. In order to draw conclusions about bottom-line performance, you will need to take a few more steps.

    We all know that dissatisfied customers defect. They are likely to leave the company for a competitor – taking their money elsewhere. In other words, bad service and subsequent customer dissatisfaction are related to your company’s (recurring) revenue.

    Take small steps but keep the bigger picture in mind. This will help you relate your measures and experiments to financially quantifiable performance numbers. The figure below shows the hypothesized steps.

Infographic: Employee Engagement - Customer satisfaction - Customer churn - Business Performance

Every organization has different performance benchmarks. Try to relate the most relevant performance metrics to engagement. This will differ per department. In addition, research how these outcomes are connected with performance and financial outcomes. As you saw in this example, it is not always a straightforward question.

Sometimes these performance benchmarks are not as clear-cut. For example, sales numbers can be quite unreliable. It can take years to make a big sales-deal. When a sales process is complex it pays off to look at alterative measures. For example, the number of contacts a salesperson has, or the number of calls he/she makes are likely to be related to performance. These are measures which help you say something about someone’s longer-term performance – and they can differ per organization.

2. Measurement and data

You now know the question you want to answer. You also know what data you need. Do you know how you will use the data?

First, you will want to clean and structure your data. HR data is often stored in multiple systems. Oftentimes the same function has two or three labels, which make it hard to analyze the data accurately. This is a time-consuming and tedious process we will discuss in a different blog. Let’s assume that your data is crispy clean and ready to be analyzed.


You have a list of the engagement scores of your customer service employees of a specific year. You also know the customer satisfaction ratings over that same year. The easiest way to analyze the impact of engagement on customer satisfaction ratings is to check for a correlation.

However, there is a problem when you present this finding to the Board of Directors. Every member with some understanding of statistics will ask the same question, namely: “Is the effect causal or correlational?”

Additionally, you will miss important elements when you perform a simple correlation. Factors like leadership, age, sex, tenure and so on, all influence the relation you are researching. By controlling for these variables, you can estimate the effects of engagement on customer satisfaction much more accurately.

SEM & regression analysis

Examples of more advanced methods are structural equation modelling (SEM) or regression analysis.

In order to prove causality, you need longitudinal data. This means that you need multiple measurements over time. With this data you can prove that a certain increase or decrease of engagement in the first year will lead to an increase or decrease in customer satisfaction six months later. For example, a one percent increase in engagement scores could lead to a two percent increase in customer satisfaction six months later.

Repeat this process for customer churn and recurring revenue. When done right, you have sufficient data to draw some initial conclusions (the statistics enthusiasts would want to apply some more analyses, e.g. a Sobel test to test for mediation).

3. Interpreting your findings

So, what do your findings really mean? After you find your answer, many more questions pop up. Are there other relevant financial outcomes? How does engagement impact the rest of the company? How can you make your employees more engaged? What other beneficial effects does engagement have? Are engaged employees happier and healthier?

Be prepared for these questions. You will get asked these and more as soon as you present your findings.

But the bottom line is: you achieved an awesome feat. You proved the relation between engagement and bottom-line performance. The CEO and CFO would both love to know more about what is happening when people become (more) engaged. And you sure sparked their interest in people analytics.

I used this example in a previous blog about predictive analytics already: Best Buy found that an 0.1% increase in engagement leads to an increase of more than $100,000 in a store’s annual operating income. This result led Best Buy to conduct quarterly instead of a yearly employee engagement surveys (Davenport, Harris & Shapiro, 2010).

This is the impact of people analytics. You are not yet Best Buy, however, you did make a huge first leap!

Some tips: always double check before you present your result. Also, think about interventions which help your company act on these results. As you have probably already experienced, most executives have a limited attention span. Make sure to spend time on developing actionable solutions for them. Do not bore them too much with your statistical wizardry.

Ultimately, you will want to turn every intervention into an experiment. Every experiment should have the goal to calculate the ROI. The ROI helps you to optimize the effectiveness of interventions and to build their business case.

This example helps you to identify the real value of employee engagement. You know its impact on different business outcomes and on bottom-line performance. This information helps making fact-based decisions about investment in your employees. And the best thing? You now have all the information at hand to convince both the CEO and CFO.


Click here to read many more business cases and examples of HR analytics use cases in our latest book on the Basic Principles of HR analytics.

Join the Conversation


  1. How to link Engagement to Business Performance ... Reply

    […] Employee engagement is an important KPI for HR. This blog explores how business performance can be predicted by looking at employee engagement.  […]

  2. Gene Tange Reply

    I think the effort to correlate engagement to business outcomes is noble. Today the data is so aggregated a la “engagement” for the company the information has low correlation. If the data was for a specific business initiative and the teams supporting/driving the outcome then maybe the variables that are really driving the outcomes could be isolated!
    In fact this is what we did during our 12,000 research effort. Engagement wasn’t on the top of the list because the word has little meaning ( too many aggregated variables in the catch all word (“engagement”). What we did find is something pretty amazing. We started with companies that had many quarters of significant performance. Why? who cares about “engagement” in average companies. Then we backed into understanding what was different in these teams. Yes teams. We found 20 variables ( many of which we had not seen before) that tie people in teams to operational and or financial performance – in fact predict it. After lots of number crunching we narrowed the variables to those few that had the greatest correlation when aggregated. Then applied this model to those same firms and began predicting business outcomes with amazing accuracy. What this breakthrough shared is while HR is chasing engagement scores in the hopes of improving HR outcomes there are amazing opportunities to drive business results much more efficiently. Results like improved acquisition outcomes, turnaround results, new product launch efficiency or hyper growth results. The things that line people want the HR community to achieve!

  3. Andrea Grande Reply

    There are many reasons why the engagement of an employee would be called into question be it stress or just general growing lack of interest in their job. While it is often difficult for managers to form a question or a discussion regarding this, analytics certainly help by allowing managers/bosses to make educated decisions based on a quantitative analysis. We sought to design our analytics as to be able to answer not just questions of engagement but of greater operational visibility as a whole.

  4. How to link Engagement to Business Performance ... Reply

    […] Engaged workers are absent less often (-37%). They are involved in less incidents (-49%) and quality defects (-41%). At the same time, they show 10% higher customer ratings, 21% higher productivity ratings and 22% higher profitability ratings  […]